Entrevista com Profissional da Área sobre os objetivos iniciais para esta fase do projeto.
Membros do Grupo presentes: TODOS
TEMAS FALADOS: Tipo de balão ideal para o protótipo; Forma de comunicação com o balão; Mecanismo de subida do balão; Materiais necessários.
CONCLUSÕES: Vamos utilizar um "Self-made plastic foil envelope" parecido com o balão utilizado no voo B-64. O método utilizado para comunicação com balão é um microcontrolador ESP32 que vai enviar informações necessárias por Wi-fi, sendo duas delas os comandos de subida e descida sendo a subida controlada girando um motor um certo numero de graus de forma a largar balastro e a descida libertando hélio do balão usando uma válvula.
LISTA DE MATERIAIS NECESSÁRIOS POR ENQUANTO:
ESP32 DevKit V1;
Válvula solenoide 12V Normalmente Fechada (NC);
Módulo Relé 5V para ativar ou desativar a válvula;
Motor capaz de rodar o mecanismo de libertação de balastro;
Bateria para alimentar os componentes;
Neste post, compartilhamos os primeiros passos do projeto. O código, desenvolvido na Arduino IDE, tem como objetivo monitorar e controlar a altitude de forma automatizada.
CÓDIGO ARDUINO: A lógica principal do projeto foi escrita em C++ e ainda não foi testada por falta de material, mas já está pronta para testes. O código envia dados em formato JSON e implementa uma função para calibração da altitude, além da lógica para controle de subida e descida do balão.
INTERFACE WEB: Também foi desenvolvida uma WebApp acessivel por Wi-Fi a partir de qualquer dispositivo. Nela, é possível inserir uma altitude desejada, calibrar o balão e visualizar alguns dados como por exemplo a altitude atual e a altitude alvo.
Esta interface facilita o controle remoto do sistema e traz informações em tempo real de maneira prática e acessível.
Meteorological balloons are widely used for atmospheric observation, providing valuable data on weather, temperature, humidity, and pressure across different layers of the atmosphere. However, one significant challenge with these balloons is that their movement and location are predominantly dictated by the prevailing winds at various altitudes. This lack of control limits their utility, particularly for fixed-point or targeted area observations, where precise positioning is essential. Consequently, even though meteorological balloons are cost-effective and relatively easy to deploy, their effectiveness is reduced by the inability to accurately steer them or control their geograph.
Meteorological balloons are widely used for atmospheric observation, providing valuable data on weather, temperature, humidity, and pressure across different layers of the atmosphere. However, one significant challenge with these balloons is that their movement and location are predominantly dictated by the prevailing winds at various altitudes. This lack of control limits their utility, particularly for fixed-point or targeted area observations, where precise positioning is essential. Consequently, even though meteorological balloons are cost-effective and relatively easy to deploy, their effectiveness is reduced by the inability to accurately steer them or control their geograph.
Meteorological balloons are widely used for atmospheric observation, providing valuable data on weather, temperature, humidity, and pressure across different layers of the atmosphere. However, one significant challenge with these balloons is that their movement and location are predominantly dictated by the prevailing winds at various altitudes. This lack of control limits their utility, particularly for fixed-point or targeted area observations, where precise positioning is essential. Consequently, even though meteorological balloons are cost-effective and relatively easy to deploy, their effectiveness is reduced by the inability to accurately steer them or control their geograph.
Meteorological balloons are widely used for atmospheric observation, providing valuable data on weather, temperature, humidity, and pressure across different layers of the atmosphere. However, one significant challenge with these balloons is that their movement and location are predominantly dictated by the prevailing winds at various altitudes. This lack of control limits their utility, particularly for fixed-point or targeted area observations, where precise positioning is essential. Consequently, even though meteorological balloons are cost-effective and relatively easy to deploy, their effectiveness is reduced by the inability to accurately steer them or control their geograph.
Meteorological balloons are widely used for atmospheric observation, providing valuable data on weather, temperature, humidity, and pressure across different layers of the atmosphere. However, one significant challenge with these balloons is that their movement and location are predominantly dictated by the prevailing winds at various altitudes. This lack of control limits their utility, particularly for fixed-point or targeted area observations, where precise positioning is essential. Consequently, even though meteorological balloons are cost-effective and relatively easy to deploy, their effectiveness is reduced by the inability to accurately steer them or control their geograph.